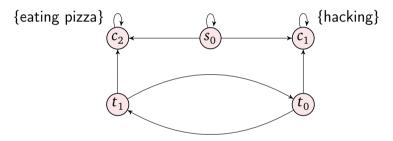
An $O(m \log n)$ algorithm for stuttering bisimulation

Jeroen Keiren ou & RU

– Joint work with Jan Friso Groote (TU/e), David N. Jansen (RU), and Anton J. Wijs (TU/e) To appear in ACM Transactions on Computational Logic

27 June 2017

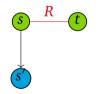
Improve complexity of deciding stuttering bisimulation equivalence


$O(m \cdot n) \longrightarrow O(m \cdot \log n)$

Kripke structure

 $\langle S, AP, \rightarrow, L \rangle$ where:

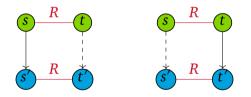
- ► S set of states
- $\blacktriangleright \rightarrow \subseteq S \times S$
- $\blacktriangleright \ L: S \to 2^{AP}$
- We let n = |S|, $m = | \rightarrow |$.



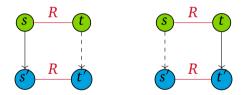
A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when SR t:

A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when SR t:

A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when SR t:



A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when SR t:


A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when s R t:

A strong bisimulation is a relation $R \subseteq S \times S$ on the states of a KS (S, AP, \rightarrow, L) such that when s R t:

L(s) = L(t), and

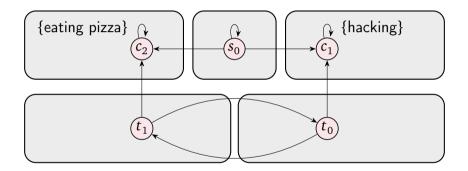
States s, t are bisimilar $(s \Leftrightarrow t)$ iff s R t for some bisimulation R

Why strong bisimulation?

- Preserves behaviour
- Allows finding equivalent (simpler) KS
- ▶ Preserves truth value of all logical formulas in LTL, CTL, ...

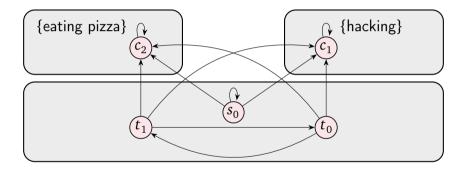
Applications:

- Check implementation conforms to specification
- Interchange specification and implementation of component when reasoning about system
- ▶ Reduce model before doing expensive operation (e.g. model checking)



Some terminology

- Equivalence relation (such as strong bisimulation) partitions set of states
- ... into disjoint subsets: equivalence classes
- Partition is a cover of *S* with disjoint subsets
- Disjoint subsets constituting partition are called blocks



Strong bisimulation Example

Strong bisimulation Example

Partition refinement:

- General technique to approximate equivalence relations from above
- Idea:
 - Start with coarse initial partition
 - Refine blocks until all conditions on equivalence satisfied

Partition refinement:

- ► General technique to approximate equivalence relations from above
- Idea:
 - \blacktriangleright Start with coarse initial partition states with same label are equivalent strong bisimulation condition 1 \checkmark
 - ▶ Refine blocks until all conditions on equivalence satisfied

Partition refinement:

- ► General technique to approximate equivalence relations from above
- Idea:
 - \blacktriangleright Start with coarse initial partition states with same label are equivalent strong bisimulation condition 1 \checkmark
 - Refine blocks until all conditions on equivalence satisfied

if $s \rightarrow s'$ and s R t then $\exists_{t'} t \rightarrow t' \dots$

Partition refinement:

- ► General technique to approximate equivalence relations from above
- Idea:
 - Start with coarse initial partition states with same label are equivalent strong bisimulation condition 1 \checkmark
 - Refine blocks until all conditions on equivalence satisfied
 - if $s \to s'$ and s R t then $\exists_{t'} t \to t' \dots$

Split the blocks into:

 $split(RfnB, SpC) = \{s \in RfnB \mid \exists_{s' \in S} s' \in SpC\}$ $cosplit(RfnB, SpC) = RfnB \setminus split(RfnB, SpC)$

Simple algorithm for strong bisimulation

- Start with coarse initial partition: states with same label are equivalent
- Is condition 2 satisfied?

if $s \to s'$ and s R t then $\exists_{t'} t \to t' \dots$

• If not, block of s' is a splitter. Split between s and t

Split the blocks into:

 $split(RfnB, SpC) = \{s \in RfnB \mid \exists_{s' \in S} s' \in SpC\}$ $cosplit(RfnB, SpC) = RfnB \setminus split(RfnB, SpC)$

strong bisimulation condition $1\sqrt{}$

Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, open Universiteit and three problems of equivalence. Information and Computation. 86, 43–68 (1990).

Algorithm for strong bisimulation Kanellakis & Smolka

 $\mathcal{P} \leftarrow$ initial partition in which states with same label are equivalent while \mathcal{P} is unstable under some block $SpB \in \mathcal{P}$ do In \mathcal{P} , replace all predecessors of RfnB with two blocks split(RfnB, SpB) and cosplit(RfnB, SpB)end while

Algorithm for strong bisimulation

Kanellakis & Smolka, with some detail

 $\mathcal{P} \leftarrow$ initial partition in which states with same label are equivalent while \mathcal{P} is unstable do

for $SpB \in \mathcal{P}$ do {Find a splitter}

Mark all predecessors of states in SpB

if Some predecessor of SpB is in block which is not marked completely then $\{SpB \text{ is a splitter}\}$

for Each marked predecessor block RfnB of SpB do

In \mathcal{P} , replace *RfnB* with two blocks *split*(*RfnB*, *SpB*) and *cosplit*(*RfnB*, *SpB*)

end for end for end while

Open Universiteit

Naive algorithm for strong bisimulation $_{\mbox{Complexity}}$

 Initialisation	(n)
 Number of splits	(n)
 Finding a splitter	m)
 Splitting w.r.t. a block	m)
Total running time:	ın)

Efficient refinement step for strong bisimulation

- \blacktriangleright Maintain coarse partition ${\cal C}$ of constellations
 - ▶ to store which potential splitters have been checked
- Constellations are unions of blocks
- \blacktriangleright Constellation in ${\cal C}$ is trivial if it corresponds with a single block in ${\cal P}$

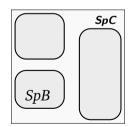
Maintain the following invariant

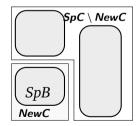
 $\blacktriangleright \ \mathcal{P}$ is stable w.r.t. each constellation in $\mathcal C$

Principle

▶ Process the smaller half (idea from Hopcroft, later Paige & Tarjan)

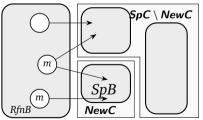
Paige, R., Tarjan, R.E.: Three Partition Refinement Algorithms SIAM Journal on Computing. 16, 973–989 (1987).

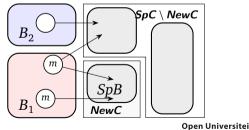

Efficient refinement step for strong bisimulation


while C contains a non-trivial constellation SpC do Choose a small splitter block $SpB \subset SpC$ { $|SpB| \le |SpC/2|$ } In C, replace SpC with NewC = SpB and $SpC \setminus NewC$

end while

. . .


. . .



Efficient refinement step for strong bisimulation $\ensuremath{\mathsf{Algorithm}}$

Mark all predecessors of states in *SpB* for each marked predecessor block *RfnB* of *SpB* do $B_1 \leftarrow split(RfnB, SpB)$ $B_2 \leftarrow cosplit(RfnB, SpB)$ {Stable w.r.t. *SpC* \ *NewC*} ... end for

Efficient refinement step for strong bisimulation $\ensuremath{\mathsf{Algorithm}}$

. . . $B_{1,1} \leftarrow split(B, SpC \setminus NewC)$ $B_{1,2} \leftarrow cosplit(B, SpC \setminus NewC)$ In \mathcal{P} , replace *RfnB* with three blocks: $B_{1,1}$, $B_{1,2}$, B_2 ... SpC \ NewC SpC \ NewC т ' m $B_{1,2}$ SpB S_DB (m NewC NewC

Efficient refinement step for strong bisimulation Algorithm (Paige & Tarjan)

 $\mathcal{P} \leftarrow$ initial partition in which states with same label are equivalent $\mathcal{C} \leftarrow \{S\}$

while ${\mathcal C}$ contains a non-trivial constellation ${\it SpC}$ do

Choose a small splitter block $SpB \subset SpC \{|SpB| \le |SpC/2|\}$

In C, replace SpC with NewC = SpB and $SpC \setminus NewC$

Mark all predecessors of states in SpB

for each marked predecessor block RfnB of SpB do

 $B_1 \leftarrow split(RfnB, SpB)$

 $B_2 \leftarrow cosplit(RfnB, SpB)$ {Stable w.r.t. $SpC \setminus NewC$ }

 $B_{1,1} \leftarrow split(B, SpC \setminus NewC)$

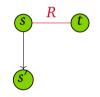
 $B_{1,2} \leftarrow cosplit(B, SpC \setminus NewC)$

In \mathcal{P} , replace RfnB with three blocks: $B_{1,1}$, $B_{1,2}$, B_2 end for

 $_{18\,/\,30}$ $\,$ end while

Time complexity

- State is in a splitter at most $\lfloor \log_2 n \rfloor$ times
- Every time s is selected, we do at most O(|in(s)|) work
- Time complexity: $\sum_{s \in S} O(|in(s)|) \lfloor \log_2 n \rfloor) = O(m \log n)$



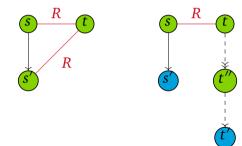
A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

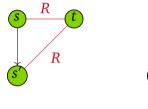
A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

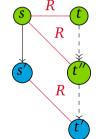


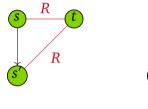
A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

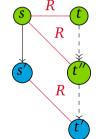


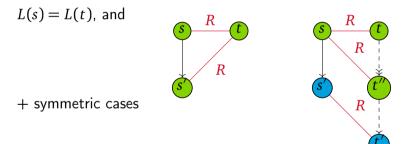
A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

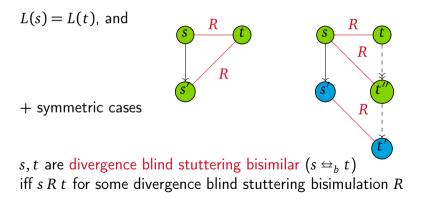



A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:


A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:




A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:


A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

Stuttering bisimulation

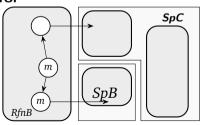
A divergence blind stuttering bisimulation is a relation $R \subseteq S \times S$ so that when s R t:

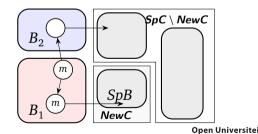
Why stuttering bisimulation?

- Better reduction than strong bisimulation
- ▶ Preserves temporal logics without next-state operator, e.g. LTL\X
- Balance between reduction and algorithmic complexity

Simple algorithm for stuttering bisimulation

Idea: use algorithm for strong bisimulation, but:

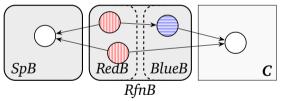

$$split(RfnB, SpC) = \{s \in RfnB \mid \exists_{k \in \mathbb{N}, s_0, \dots, s_k \in S} s = s_0 \\ \land \forall_{i < k} s_i \rightarrow s_{i+1} \land s_i \in RfnB \land s_k \in SpC\}$$
$$cosplit(RfnB, SpC) = RfnB \land split(RfnB, SpC)$$



Refinement for stuttering bisimulation

Mark all predecessors of states in *SpB* Extend marking through inert transitions in *SpB* for each marked predecessor block *RfnB* of *SpB* do

 $B_1 \leftarrow$ marked states in RfnB $B_2 \leftarrow$ unmarked states in RfnB...end for



. . .

Problems with simple algorithm

- Extending marking is inefficient: we visit more than just the marked states, so time complexity of O(in(SpB) not met.
 Solution: Process the smaller half, again, by balancing search for blue/red states
- Invariant not automatically reestablished after splitting.

Solution: Perform additional splits to reestablish invariant

Efficient algorithm

Complete pseudocode

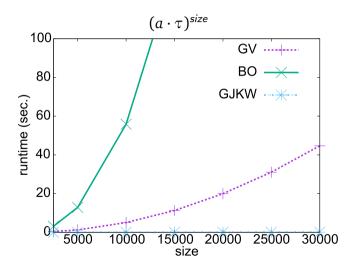
. 1	function DBSTUTTERINGEQUIVALENCE(S, AP, \rightarrow, L)	
2.1	(Find the divergence-blind stuttering equivalence classes for Kripke str	ucture (S $AP \rightarrow L$) with
	$n \in \mathcal{O}(m)$.}	accure (0,111,,12) with
22	$\mathcal{P} := \mathcal{P}_0$, i. e. the initial, cycle-free partition; $\mathscr{C} := \{S\}$	1
	Initialise all temporary data	$\mathcal{O}(m \log n)$
	while C contains a non-trivial constellation SpC do	$\leq n$ iterations
2.5	Choose a small splitter block $SpB \subset SpC$ from \mathcal{P} , i. e. $ SpB \leq \frac{1}{2} SpC $	{
2.6	Create a new constellation NewC and move SpB from SpC to NewC	
2.7	C := partition C where SpB is removed from SpC and NewC is added	$\mathcal{O}(1)$
2.8	Mark block SpB as refinable	
2.9	Mark all states of SpB as predecessors	
2.10	for all $s \in SpB$ do {Find predecessors of SpB }	1
2.11	for all $s' \in in(s) \setminus SpB$ do	
2.12	Mark the block of s' as refinable	
2.13	Mark s' as predecessor of SpB	
2.14	Register that $s' \rightarrow s$ goes to NewC (instead of SpC)	$O\left(\frac{ in(SpB) +}{ out(SpB) } \right)$
2.15	Store whether s' still has some transition to $SpC \setminus SpB$	out(SpB)
2.16	end for	
2.17	Register that inert transitions from s go to NewC (instead of SpC)	
2.18	Store whether s still has some transition to $SpC \setminus SpB$	
2.19	end for	
2.20	for all refinable blocks RfnB do {Stabilise the partition again}	$\geq in(SpB) $ iterations
2.21	Mark block <i>RfnB</i> as non-refinable	
2.22	$(RedB, BlueB) := REFINE(RfnB, NewC, \{marked states \in RfnB\}, \phi)$	
2.23	if RedB contains new bottom states then	
2.24	RedB := POSTPROCESSNEWBOTTOM(RedB, BlueB)	
2.25	end if	
2.26	$(RedB, BlueB) := REFINE(RedB, SpC \setminus SpB, \phi, \{transitions RedB \rightarrow SpC \setminus SpB\})$	
2.27	if RedB contains new bottom states then	
2.28	POSTPROCESSNEWBOTTOM(RedB, BlueB)	
2.29	end if	
2.30		
2.31	end for	
	end while	
2.33	return P	

Efficient algorithm

Complete pseudocode

3.1	function REFINE(RfnB, SpC, Red, From	(Red)				
	(Try to refine block RfnB, depending on whether states have (weak) transitions to the splitter co stellation SpC. States in Red are known to have such a transition; alternatively, FromRed contain					
	all strong transitions from RfnB to SpC	C. If FromRed $\neq \emptyset$, then bottom stat	tes that are not in R			
	can be tested quickly whether they have	such a transition.}				
3.2	if $RfnB \subseteq SpC$ then return $\langle RfnB, \phi \rangle$					
3.3	Test := {bottom states} Red , Blue := ϕ		l o cu			
3.4	begin (Spend the same amount of work	on either coroutine:}	10(1)			
3.5	whenever $ Blue > \frac{1}{n} RfnB $ then	whenever $ Red > \frac{1}{2} RfnB $ then	O(1) per assignmen			
	Abort this coroutine	Abort this coroutine	to Blue or Red, resp			
3.6	while Test $\neq \phi \land FromRed \neq \phi$ do	while $FromRed \neq \emptyset$ do	1			
3.7	Choose $s \in Test$	Choose $s \rightarrow t \in FromRed$				
3.8	if $s \rightarrow SpC$ then	$Test := Test \setminus \{s\}$				
3.9	Move s from Test to Red	$Red := Red \cup (s)$	((Test))			
3.10	else	$FromRed := FromRed \setminus \{s \rightarrow t\}$	and			
3.11	Move s from Test to Blue		O(FromRed)			
3.12	end if					
3.13	end while	end while				
3.14	$Blue := Blue \cup Test$					
3.15	while Blue contains	while Red contains	1			
	unvisited states do	unvisited states do				
3.16	Choose an unvisited $s \in Blue$	Choose an unvisited $s \in Red$				
3.17	Mark s as visited	Mark s as visited	(in(NewB) +)			
3.18	for all $s' \in in_s(s) \setminus Red$ do	for all $s' \in in_{\mathcal{X}}(s)$ do				
3.19	if notblue(s') undefined then		O out(NewB) +			
3.20	$notblue(s') := out_x(s') $		[out(NewBott)]			
3.21	end if		and			
3.22	notblue(s') := notblue(s') - 1		O(in(NewB))			
3.23	if $notblue(s') = 0 \land (FromRed =$					
	$\phi \lor s' \not\rightarrow SpC$) then					
3.24	$Blue := Blue \cup \{s'\}$	$Red := Red \cup \{s'\}$				
3.25	end if					
3.26	end for	end for				
3.27	end while	end while				
3.28	Abort the other coroutine	Abort the other coroutine				
3.29	Move Blue to a new block NewB	Move Red to a new block NewB	O(out(NewB))			
3.50	Destroy all temporary data	Destroy all temporary data	as lines 3.6-3.27			
3.31	for all $s \in NewB$ do	for all non-bottom $s \in NewB$ do				
3.32	for all $s' \in in_s(s) \setminus NewB$ do	for all $s' \in out_{s}(s) \setminus NewB$ do				
3.33	$s' \rightarrow s$ is no longer inert	$s \rightarrow s'$ is no longer inert				
3.34	$if out_{\tau}(s') = 0$ then	end for	O(in(NewB))			
3.35	s' is a new bottom state	$if out_{\tau}(s) = 0$ then	or			
3.36	end if	s is a new bottom state	O(out(NewB))			
3.37	end for	end if				
3.38	end for	end for				
3.39	RedB := RfnB, $BlueB := NewB$	RedB := NewB, BlueB := RfnB	í			
	end	i inter i inte	0(1)			
	P := partition P where NewB is added	and the states in NewB are removed	d from Rfn R			
	return (RedB,BlueB) (with old and new					

Efficient algorithm


Complete pseudocode

lgo	rithm 4 Refine as required by new bottom states, called in lines 2	2.24 and 2.28
4.1 f	unction POSTPROCESSNEWBOTTOM(RedB,BlueB)	
{}	Stabilise the partition for all new bottom states in RedB.}	
4.2 C	reate an empty search tree \mathscr{R} of constellations	0(1)
4.3 ($\begin{array}{l} ResultB, RfnB\rangle := \operatorname{ReFINE}(RedB, cosplit(RedB, BlueB), \{ old bottom states \\ \in RedB \}, \phi) \end{array}$	
4.4 f	or all constellations $C \not\in \mathcal{R}$ reachable from $RfnB$ do	$\leq out(NewBott) $ iter'ns
4.5	Add C to \mathscr{R}	$\mathcal{O}(\log n)$
4.6	Register that the transitions $RfnB \rightarrow C$ need postprocessing	O(1)
4.7 e	nd for	
4.8 f	or all bottom states $s \in RfnB$ do)
4.9	Set the current constellation pointer of s to the first constellation it	O(NewBott)
	can reach	([rvewBott])
1.10 e	nd for]
4.11 f	or all constellations $SpC \in \mathscr{R}$ (in order) do	$\leq out(NewBott) $ iter'ns
.12	for all blocks \hat{B} with transitions to SpC that need postprocessing do	$\int \leq Out(IvewBott) $ iter its
4.13	Delete $\hat{B} \rightarrow SpC$ from the transitions that need postprocessing	0(1)
1.14	$(RedB, BlueB) := REFINE(\hat{B}, SpC, \phi, \{transitions \hat{B} \rightarrow SpC\})$	
.15	for all old bottom states $s \in RedB$ do)
.16	Advance the current constellation pointer of s to the next con-	$\mathcal{O}(out(NewBott) \cap SpC)$
	stellation it can reach	O(out(ivewboil) SpC)
.17	end for]
4.18	if RedB contains new bottom states then	
4.19	$\langle ,RfnB \rangle := REFINE(RedB, cosplit(RedB,BlueB), \{old bottom \}$	
	states $\in RedB$, ϕ)	
4.20	Register that the transitions $RfnB \rightarrow SpC$ need postprocessing	0(1)
1.21	Restart the procedure (but keep <i>R</i>), i. e. go to line 4.4	
1.22	end if	
1.23	end for	
1.24	Delete SpC from \mathcal{R}	$\mathcal{O}(\log n)$
1.25 e	nd for	
4.26 L	estroy all temporary data	
1.27 r	eturn ResultB	

Experimental results

Experimental results

	original		minimised		running time (in s)		
Model	n	m	п	m	GV	BO	GJKW
vasy_69_520	69,754	520,633	69,753	520,632	1.20	5.00	1.40
vasy 66 1302	66,929	1,302,664	51,128	1,018,692	2.20	9.00	3.00
vasy 4338 15666	4,338,672	15,666,588	704,737	3,972,600	1,800.00	300.00	41.00
vasy 11026 24660	11,026,932	24,660,513	775,618	2,454,834	1,900.00	1,300.00	68.00
lift6-final	6,047,527	26,539,368	1,699	9,870	59.00	270.00	51.00
vasy 12323 27667	12,323,703	27,667,803	876,944	2,780,022	2,500.00	1,100.00	77.00
vasy 8082 42933	8,082,905	42,933,110	290	680	100.00	450.00	57.00
cwi_7838_59101	7,838,608	59,101,007	62,031	470,230	260.00	6,500.00	160.00
dining 14	18,378,370	164,329,284	228,486	2,067,856	730.00	2,000.00	490.00
cwi_33949_165318	33,949,609	165,318,222	12,463	71,466	620.00	5,600.00	500.00
1394-fin3	126,713,623	276,426,688	160,258	538,936	68,000.00	10,000.00	1,000.00

Summary

- Vast improvement: $O(m \log n)$ instead of O(mn)
- ► Fast in practice
- Can also be used for branching bisimulation $O(m(\log |Act| + \log n))$

• Branching bisimulation in $O(m \log n)$?

- Branching bisimulation in $O(m \log n)$?
- Improve governed stuttering bisimulation for parity games (currently O(mn²))

- Branching bisimulation in $O(m \log n)$?
- Improve governed stuttering bisimulation for parity games (currently O(mn²))
- Investigate impact on other relations such as orthogonal bisimulation

- Branching bisimulation in $O(m \log n)$?
- Improve governed stuttering bisimulation for parity games (currently O(mn²))
- Investigate impact on other relations such as orthogonal bisimulation
- Machine-checked proof of running time complexity?

Thank you

